Friday, 6 October 2017

Movimiento De La Implementación Del Filtro Promedio


El promedio móvil como filtro El promedio móvil se utiliza a menudo para suavizar los datos en presencia de ruido. La media móvil simple no siempre se reconoce como el filtro de respuesta de impulso finito (FIR) que es, mientras que es realmente uno de los filtros más comunes en el procesamiento de señales. Tratarlo como un filtro permite compararlo con, por ejemplo, filtros de sinc de ventana (véanse los artículos sobre filtros de paso bajo, paso alto, paso de banda y rechazo de banda para ejemplos de los mismos). La principal diferencia con estos filtros es que el promedio móvil es adecuado para señales para las cuales la información útil está contenida en el dominio del tiempo. De las cuales las mediciones de suavizado por promediado son un excelente ejemplo. Sin embargo, los filtros windowed-sinc son fuertes en el dominio de la frecuencia. Con la ecualización en el procesamiento de audio como un ejemplo típico. Hay una comparación más detallada de ambos tipos de filtros en el dominio del tiempo frente al rendimiento de los dominios de frecuencia de los filtros. Si tiene datos para los que tanto el tiempo como el dominio de frecuencia son importantes, entonces puede que desee echar un vistazo a Variaciones en el promedio móvil. Que presenta una serie de versiones ponderadas de la media móvil que son mejores en eso. El promedio móvil de longitud (N) puede definirse como escrito tal como se implementa típicamente, con la muestra de salida actual como el promedio de las muestras (N) anteriores. Visto como un filtro, el promedio móvil realiza una convolución de la secuencia de entrada (xn) con un pulso rectangular de longitud (N) y altura (1 / N) (para hacer el área del pulso y, por tanto, la ganancia de El filtro, uno). En la práctica, es mejor tomar (N) impar. Aunque un promedio móvil también puede calcularse usando un número par de muestras, usar un valor impar para (N) tiene la ventaja de que el retardo del filtro será un número entero de muestras, ya que el retardo de un filtro con (N) Muestras es exactamente ((N-1) / 2). El promedio móvil puede entonces alinearse exactamente con los datos originales desplazándolo por un número entero de muestras. Dominio de tiempo Dado que el promedio móvil es una convolución con un pulso rectangular, su respuesta de frecuencia es una función sinc. Esto hace que sea algo así como el dual del filtro windowed-sinc, ya que es una convolución con un pulso sinc que da como resultado una respuesta de frecuencia rectangular. Es esta respuesta de frecuencia de sinc que hace que el promedio móvil sea un pobre intérprete en el dominio de la frecuencia. Sin embargo, funciona muy bien en el dominio del tiempo. Por lo tanto, es perfecto para suavizar los datos para eliminar el ruido, mientras que al mismo tiempo sigue manteniendo una respuesta de paso rápido (Figura 1). Para el ruido gaussiano blanco aditivo típico (AWGN) que se asume a menudo, las muestras del promedio (N) tienen el efecto de aumentar el SNR por un factor de (sqrt N). Dado que el ruido para las muestras individuales no está correlacionado, no hay razón para tratar cada muestra de manera diferente. Por lo tanto, el promedio móvil, que da a cada muestra el mismo peso, eliminará la cantidad máxima de ruido para una nitidez de respuesta dada. Implementación Debido a que es un filtro FIR, el promedio móvil puede implementarse a través de la convolución. Entonces tendrá la misma eficiencia (o falta de ella) como cualquier otro filtro FIR. Sin embargo, también se puede implementar recursivamente, de una manera muy eficiente. Se deduce directamente de la definición que esta fórmula es el resultado de las expresiones para (yn) y (yn1), es decir, donde observamos que el cambio entre (yn1) y (yn) es que un término extra (xn1 / N) Aparece al final, mientras que el término (xn-N1 / N) se elimina desde el principio. En aplicaciones prácticas, a menudo es posible omitir la división por (N) para cada término, compensando la ganancia resultante de (N) en otro lugar. Esta implementación recursiva será mucho más rápida que la convolución. Cada nuevo valor de (y) se puede calcular con sólo dos adiciones, en lugar de las (N) adiciones que serían necesarias para una implementación directa de la definición. Una cosa a tener en cuenta con una implementación recursiva es que se acumularán errores de redondeo. Esto puede o no ser un problema para su aplicación, pero también implica que esta implementación recursiva funcionará mejor con una implementación entera que con números de coma flotante. Esto es bastante inusual, ya que una implementación en coma flotante suele ser más simple. La conclusión de todo esto debe ser que usted nunca debe subestimar la utilidad del filtro de media móvil simple en aplicaciones de procesamiento de señales. Herramienta de diseño de filtros Este artículo se complementa con una herramienta de diseño de filtros. Experimente con diferentes valores para (N) y visualice los filtros resultantes. Intentarlo ahora esencialmente tengo una matriz de valores como este: La matriz anterior es simplificada, estoy coleccionando 1 valor por milisegundo en mi código real y necesito procesar la salida en un algoritmo que escribí para encontrar el pico más cercano antes de un punto en el tiempo . Mi lógica falla porque en mi ejemplo anterior, 0.36 es el pico real, pero mi algoritmo miraría hacia atrás y vería el último número 0.25 como el pico, pues hay una disminución a 0.24 antes de él. El objetivo es tomar estos valores y aplicarles un algoritmo que los suavice un poco para que tenga valores más lineales. (Es decir: la identificación como mis resultados para ser curvy, no jaggedy) se me ha dicho que aplique un filtro de media móvil exponencial a mis valores. ¿Cómo puedo hacer esto? Es muy difícil para mí para leer las ecuaciones matemáticas, yo trato mucho mejor con el código. ¿Cómo procesar los valores en mi matriz, aplicando un cálculo de promedio móvil exponencial para igualarlos? Preguntado Feb 8 12 at 20:27 Para calcular una media móvil exponencial. Usted necesita mantener un poco de estado alrededor y usted necesita un parámetro de ajuste. Esto requiere una pequeña clase (asumiendo que está usando Java 5 o posterior): Instantiate con el parámetro decayendo que desea (puede tomar la afinación debe estar entre 0 y 1) y luego use average () para filtrar. Al leer una página sobre alguna recurrencia matemática, todo lo que realmente necesita saber al convertirlo en código es que a los matemáticos les gusta escribir índices en matrices y secuencias con subíndices. Sin embargo, la EMA es bastante simple, ya que sólo es necesario recordar un valor antiguo que no requiere arrays de estado complicado. Respondió 8 Feb a las 20:42 TKKocheran: Bastante. No es bueno cuando las cosas pueden ser simples (si comienza con una nueva secuencia, obtenga un nuevo averager). Observe que los primeros términos de la secuencia promedio saltarán alrededor de un bit debido a efectos de límite, pero obtendrá aquellos con otras medias móviles también. Sin embargo, una buena ventaja es que usted puede envolver la lógica del promedio móvil en el averager y experimentar sin molestar el resto de su programa demasiado. Ndash Donal Fellows Feb 9 12 en 0:06 Estoy teniendo un rato difícil entender sus preguntas, pero intentaré contestar de todos modos. 1) Si su algoritmo encontró 0.25 en lugar de 0.36, entonces es incorrecto. Está mal porque asume un aumento o una disminución monotónica (que siempre sube o baja siempre). A menos que usted promedio TODOS sus datos, sus puntos de datos --- como usted los presenta --- son no lineales. Si realmente desea encontrar el valor máximo entre dos puntos en el tiempo, corte su matriz de tmin a tmax y busque el máximo de ese subarray. 2) Ahora, el concepto de promedios móviles es muy simple: imagina que tengo la siguiente lista: 1.4, 1.5, 1.4, 1.5, 1.5. Puedo suavizarlo tomando el promedio de dos números: 1.45, 1.45, 1.45, 1.5. Observe que el primer número es el promedio de 1,5 y 1,4 (segundo y primeros números), la segunda (nueva lista) es el promedio de 1,4 y 1,5 (tercera y segunda lista antigua) la tercera (nueva lista) el promedio de 1,5 y 1,4 (Cuarto y tercero), y así sucesivamente. Podría haberlo hecho el período tres o cuatro, o n. Observe cómo los datos son mucho más suaves. Una buena manera de ver los promedios móviles en el trabajo es ir a Google Finance, seleccionar una acción (probar Tesla Motors bastante volátil (TSLA)) y hacer clic en technicals en la parte inferior de la tabla. Seleccione Promedio móvil con un período determinado y Promedio móvil exponencial para comparar sus diferencias. La media móvil exponencial es sólo otra elaboración de esto, pero los pesos de los datos más antiguos menos de los nuevos datos de esta es una manera de sesgar el alisamiento hacia la parte posterior. Por favor, lea la entrada de Wikipedia. Por lo tanto, esto es más un comentario que una respuesta, pero el pequeño cuadro de comentarios era sólo a pequeño. Buena suerte. Si usted está teniendo apuro con la matemáticas, usted podría ir con una media móvil simple en vez de exponencial. Así que la salida que obtendrías serían los últimos x términos divididos por x. Pseudocódigo no comprobado: Tenga en cuenta que tendrá que manejar las partes inicial y final de los datos, ya que claramente no puede medirse los últimos 5 términos cuando está en su segundo punto de datos. Además, hay maneras más eficientes de calcular este promedio móvil (suma suma - más reciente más reciente), pero esto es para obtener el concepto de lo que está sucediendo a través de. Respondió 8 febrero a las 20:41 Su respuesta 2016 Stack Exchange, Inc El científico y los ingenieros Guía para el procesamiento de señales digitales Por Steven W. Smith, Ph. D. Como su nombre indica, el filtro de media móvil opera promediando un número de puntos de la señal de entrada para producir cada punto en la señal de salida. En forma de ecuación, esto se escribe: Donde es la señal de entrada, es la señal de salida, y M es el número de puntos en la media. Por ejemplo, en un filtro de media móvil de 5 puntos, el punto 80 de la señal de salida viene dado por: Como alternativa, el grupo de puntos de la señal de entrada puede ser elegido simétricamente alrededor del punto de salida: Esto corresponde a cambiar la suma en Eq . 15-1 de: j 0 a M -1, a: j - (M -1) / 2 a (M -1) / 2. Por ejemplo, en un filtro de media móvil de 10 puntos, el índice, j. Puede ir de 0 a 11 (promedio de un lado) o de -5 a 5 (promedio simétrico). El promedio simétrico requiere que M sea un número impar. La programación es ligeramente más fácil con los puntos en solamente un lado sin embargo, esto produce un cambio relativo entre las señales de entrada y de salida. Debe reconocer que el filtro de media móvil es una convolución utilizando un núcleo de filtro muy simple. Por ejemplo, un filtro de 5 puntos tiene el núcleo del filtro: 82300, 0, 1/5, 1/5, 1/5, 1/5, 1/5, 0, 08230. Es decir, el filtro de media móvil es una convolución De la señal de entrada con un impulso rectangular que tiene un área de uno. La Tabla 15-1 muestra un programa para implementar el filtro de media móvil.

No comments:

Post a Comment